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The structure of the primary Hamiltonian constraints is examined for a simple 
singular Lagrangian form (N interacting particles). The problem is a straightfor- 
ward generalization of well-known two-particle cases. 

1. I N T R O D U C T I O N  AND N O T A T I O N  

In  a given frame of  reference ~ we assume there are N - >  1 point  
particles; that  is, a total o f  4 N  "pos i t ion"  coordinates  

x(~), /z = 0, 1, 2, 3 (axis label) 
(1) 

i = 1, 2 , . . . ,  N (particle label) 

We define the general ized coordinates 

q.~ i ~ ,  i , j  = 1, 2, N (2) j = O [ j X ( i ) ~  �9 . �9 

where (@) is a constant  nonsingular  matrix. (Note  the summat ion  of  
repeated up and down  indices.) For  a simpler notat ion,  we also in t roduce 
the symbol  Q = {QA}, A = 1, 2 , . . . ,  4N, defined by 

{ Q a } = { q ~ }  (3) 

For  example,  one can choose  

Q t = q O , . . . ,  Q , = q 3  

(4) Q4N-3 = q O , . . . ,  Q,N = q 3  
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2. LAGRANGIAN AND CONSTRAINTS 

Assuming that the (isolated) system can be described with respect to 
an evolution parameter r (Kalb and Van Alstine, 1976; Raspini, 1983), we 
now consider a reparametrization-invariant Lagrangian L (Kalb and Van 
Alstine, 1976; Bolza, 1904). The simplest form, modeled on the relativistic 
single-particle case, is clearly 

Z = --[OAGAB(Q)QB]I/2; GAB = GBA 
(5) 

QA _ dQ a, A, B = 1 , 2 , . . . , 4 N  
dr 

The Lagrangian in (5) is singular, and the corresponding Legendre 
Hamiltonian is identically vanishing (Kalb and Van Alstine, 1976; Bolza, 
1904). A Dirac-type treatment must then be applied (Kalb and Van Alstine, 
1976; Raspini, 1983) if one wishes to obtain an appropriate Hamiltonian 
formulation. Of course, before starting this approach, one should restrict 
the (0, Q) space according to 

QAGasQB > 0 (6) 

which is the regularity condition for L. 
From L, we define the P canonical momenta: 

PA = -OL/OQ A= GAeS" (7a) 

S z = - O S / L  (7b) 

Momenta are not all independent, and some "primary constraints" exist 
among them (Kalb and Van Alstine, 1976, Raspini, 1983; Dirac, 1964; 
Shanmugadhasan, 1973; Sudarshan and Mukunda, 1974). The precise 
number of constraints depends on the rank of (GAB). We then select a part 
of the Q space where this rank is constant: 

rank[GAB(Q)]=R; 0 < R - 4 N  (8) 

For our chosen R, the treatment is applied in the (Q, Q) region identified 
by equations (6) and (8). 

When the rank of (GAs) is R, there are 4 N - R  independent vectors 
Vl(Q) such that 

GBAVA=o; /=  1 , 2 , . . . , 4 N - R  (9) 

Therefore, the first 4 N - R  primary constraints can be written as 

PAVA(Q) = 0 (10) 
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At this point, one has already introduced all the constraints that are needed 
to take into account the functional interdependence of the PA with respect 
to the variables S B [equation (Ta)]. In fact 

OPA/cgS B = GAB (11) 

The next step is to examine equation (7b), which is also not invertible (that 
is, the (~ variables cannot be solved as functions of the S variables). 

It is readily seen that equation (7b) implies the identity 

SAGABS B = 1 (12) 

In terms of the P variables, this is equivalent to the primary constraint 

PAHAB(Q)P B = 1 (13) 

where (H AB) is any of the matrices such that 

GAcHCDGDB = GAB , A, B, C, D = 1, 2 , . . . ,  4N  (14) 

Clearly, the relationship expressed by (13) has the structure of an 
Einstein condition. (That is, a quadratic expression of the momenta being 
equal to a constant.) Furthermore, the same equation can be considered as 
a straightforward generalization of well-known two-particle cases. In such 
cases, the choice for GAB is 

GAB(Q) free = GAB (Q) V(Q) (15) 
f~Jree where "JAB is suitable for free particles, and V plays the role of the 

"multiplicative potential" (Kalb and Van Alstine, 1976). 
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